

    
      
          
            
  
NBIS Metagenomics Workflow

A snakemake workflow for preprocessing and analysis of metagenomic
datasets. Handles single- and/or paired-end data and runs on a local UNIX/LINUX
laptop, or in a cluster environment.

The source code is available at
GitHub [https://github.com/NBISweden/nbis-meta] and is being developed as
part of the NBIS [http://nbis.se] bioinformatics infrastructure.


Installation


From GitHub

1. Clone the repository

Checkout the latest version of this repository (to your current directory):

git clone git@github.com:NBISweden/nbis-meta.git
cd nbis-meta





Change directory:

cd nbis-meta





2. Install the required software

The workflow is structured around a default core set of rules and several
additional rules that can be set my modifying the config settings. Because of
this modular structure the software requirements are divided in several conda
files. This ensures that the size of the software environment is only as big
as it needs to be for your analysis. However, it also means that snakemake
has to be run with the --use-conda flag.

The bare-minimum requirements for starting the workflow can be installed with
the environment.yml file:

conda env create -f environment.yml





Activate the environment using:

conda activate envs/nbis-meta





You are now ready to start using the workflow!

To run the workflow on some example data simply type:

snakemake --use-conda -j 4 -p








From Docker

You can also pull the latest Docker image which has all the code and
requirements needed to run the workflow:

docker pull nbisweden/nbis-meta:latest





To run a container with the image and get an interactive shell, run:

docker run --rm -it -v $(pwd):/analysis nbisweden/nbis-meta:latest /bin/bash






Note

If you plan on using the workflow in a cluster environment running the
SLURM workload manager (such as Uppmax) you should configure the workflow
with the SLURM snakemake profile.
See the documentation [https://nbis-metagenomic-workflow.readthedocs.io/en/latest/configuration/index.html#how-to-run-on-uppmax-hebbe-snic-resources].























          

      

      

    

  

    
      
          
            
  
Installation

1. Clone the repository
Checkout the latest version of this repository:

git clone https://bitbucket.org/scilifelab-lts/nbis-meta





Change directory:

cd nbis-meta





2. Install the required software
All the software needed to run this workflow is included as a
Conda [http://anaconda.org] environment file. To create the
environment nbis-meta use the supplied envs/environment.yaml file.

First create the environment using the supplied file:

mkdir envs/nbis-meta
conda env create -f envs/environment.yaml -p envs/nbis-meta





Next, add this directory to the envs_dirs in your conda config (this is to simplify
activation of the environment and so that the full path of the
environment installation isn’t shown in your bash prompt):

conda config --add envs_dirs $(pwd)/envs/





Activate the environment using:

conda activate envs/nbis-meta





You are now ready to start using the workflow!




Quick start guide


Using the examples

The workflow comes with a set of example datasets found in
the examples/data folder. By default the workflow uses the
configuration specified in the config.yaml
file to do preprocessing and assembly of the example data.

To see what the workflow is configured to do in the default setup run:

snakemake -np





This performs a ‘dry run’ (specified by the -n flag) where nothing is
actually executed just printed to the terminal. Try it out by removing
the -n.

To familiarize yourself with ways to run the workflow you can make use
of the example directories found under examples/.

For instance, to run the centrifuge example (Read classification and
taxonomic profiling using Centrifuge) do:

snakemake --configfile examples/centrifuge/config.yaml





See more about the examples here: binning [https://nbis-metagenomic-workflow.readthedocs.io/en/latest/binning/index.html#binning-tutorial], centrifuge [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/classification/index.html#example-run-with-centrifuge]




Using your own data


	Create your sample_list [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/configuration/sample_list.html]


	Configure the workflow to your needs. Make sure to updated the sample_list: path in the config.





Note

We recommend that you copy the config.yaml file to some other file, e.g. ‘myconfig.yaml’, and make your changes in the copy.



You are now ready to start the workflow using:

snakemake --configfile myconfig.yaml





You can have multiple configuration files (e.g. if you want to run the
workflow on different sets of samples or with different parameters).






General configuration settings

Here you’ll find information on how to configure the pipeline.

The file config.yaml contains all the parameters for the pipeline.
The most general settings are explained here. For more specific settings
regarding the different workflow steps you may refer to the corresponding documentation.


Note

The only required config setting is sample_list:. Without this, the workflow cannot run but essentially your config file may contain only this parameter.



workdir: Working directory for the snakemake run. All paths are evaluated relative to this directory.

sample_list: should point to a file with information about samples. See the documentation on The sample list file for more details on the format of this file.

taxdb: Path to where taxonomic database files from NCBI are stored.

results_path: this directory will contain reports, figures, count tables and other types of
aggregated and processed data. Output from the different steps will be created in
sub-directories. For instance, assemblies will be in a sub-directory called ‘assembly’

intermediate_path: this directory contains files which might have required a substantial computational
effort to generate and which might be useful for further analysis. They are not deleted
by Snakemake once used by downstream rules. This could be for example bam files.

temp_path: this directory contains files which are either easily regenerated or redundant. This
could be for example sam files which are later compressed to bam.

scratch_path: Similar to temp_path but primarily used on cluster resources (e.g. Uppmax)
in order to speed up writes to disk by utilizing local storage for nodes.

resource_path: Path to store database files needed for the workflow.

report_path: Path to store report files such as assembly and mapping stats and plots




The sample list file

The sample_list: config parameter should point to a file containing information about the samples and respective
files to be used as input for the pipeline.

The sample list file specifies where the input data for the workflow is located on your computer or
the compute cluster you are running on.

Below is an example of what the sample file may look like. This
example table is also found in samples/sample_annotation_example.tab.
This example uses data from the repository Metagenomic Mocks [https://bitbucket.org/johnne/metagenomic-mocks]. Each sample contains 100 000 read-pairs.










	sampleID

	runID

	assemblyGroup

	fileName

	pair





	anterior_nares

	1

	anterior_nares,all

	examples/data/anterior_nares_100000_R1.fastq.gz

	examples/data/anterior_nares_100000_R2.fastq.gz



	buccal_mucosa

	1

	buccal_mucosa,all

	examples/data/buccal_mucosa_100000_R1.fastq.gz

	examples/data/buccal_mucosa_100000_R2.fastq.gz



	retr_crease

	1

	retr_crease,all

	examples/data/retr_crease_100000_R1.fastq.gz

	examples/data/retr_crease_100000_R2.fastq.gz



	stool

	1

	stool,all

	examples/data/stool_100000_R1.fastq.gz

	examples/data/stool_100000_R2.fastq.gz






The sampleID and runID columns:

The sampleID column allows you to designate a sample ID for each set of sequences while the runID column can
be used to designate e.g. technical replicates of samples. These two columns together form a unique tag for each
sequence set. If there is only one sequencing run per sampleID you may leave the runID column empty or simply
fill in a ‘1’.

The assemblyGroup column:

The assemblyGroup column allows you to group together samples (and/or individual
sample runs) into assembly groups. A single sample/run combination can be grouped into multiple assembly groups by
specifying comma separated assembly group names in this field. In the example above each sample has been assigned to
an individual assembly as well as a co-assembly named ‘all’ which will contain all samples. Running the workflow
with this file will produce five assemblies in total (named ‘anterior_nares’, ‘buccal_mucosa’, ‘retr_crease’, ‘stool’
and ‘all).

The fileName and pair columns:

These two columns specify file paths for sequences in the (gzipped) fastq format.
For paired end data the fileName column points to forward read file and the pair column points to the
corresponding reverse read file. For single end data only the fileName column is
used.




How to run on UppMax/Hebbe (SNIC resources)

The recommended way to run this workflow on a SLURM cluster such as Uppmax is to install the
SLURM profile [https://github.com/Snakemake-Profiles/slurm] for snakemake.

To do so you will need cookiecutter which you can install using the supplied environment file:

mkdir envs/cookiecutter
conda env create -f envs/cookiecutter.yaml -p envs/cookiecutter





Then activate the cookiecutter environment and deploy the profile:

conda activate envs/cookiecutter
mkdir profiles
cookiecutter -o profiles https://github.com/Snakemake-Profiles/slurm.git





You will be prompted to add some information such as account number, partition etc. You can leave some of these fields
blank but should at least fill out the account number (e.g. snic2017-1-234 on SNIC resources).
Below is a recommended example:

account []: snic2017-1-234 # Use your actual account number!
error []:
output []:
partition []: core
profile_name [slurm]: slurm
Select submit_script:
1 - slurm-submit.py
2 - slurm-submit-advanced.py
Choose from 1, 2 (1,2) [1]: 2





You can now run the workflow in the cluster environment using:

snakemake --profile profiles/slurm -j 100 -np





The -j 100 flag tells snakemake to have at most 100 jobs submitted to the SLURM queue at the same time.





          

      

      

    

  

    
      
          
            
  
Preprocessing reads

Read preprocessing can be run as a single part of the workflow using the command:

snakemake --configfile <yourconfigfile> preprocess





Input reads can be trimmed using either Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic]
or Cutadapt [https://github.com/marcelm/cutadapt].


Trimmomatic

The settings specific to Trimmomatic are:

trimmomatic: Set to True to preprocess reads using Trimmomatic.

trimmomatic_home: The directory where Trimmomatic stores the .jar file and adapter sequences. If you don’t know it
leave it blank to let the pipeline attempt to locate it.

trim_adapters: Set to ‘True’ to perform adapter trimming.

pe_adapter_params: The adapter trim settings for paired end reads. This is what follows the ‘ILLUMINACLIP’ flag.
The default “2:30:15” will look for seeds with a maximum of 2 mismatches, and clip if extended seeds reach a score
of 30 for paired-end reads or 10.

pe_pre_adapter_params: Trim settings to be performed prior to adapter trimming. See the
Trimmomatic manual [http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf] for
possible settings. As an example, to trim the first 10 bp from the start of reads set this to HEADCROP:10.

pe_post_adapter_params: Trim settings to be performed after adapter trimming. To for instance set a 50 bp
threshold on the minimum lenghts of reads after all trimming is done, set this to MINLEN:50.

The se_adapter_params: and se_post_adapter_params: settings are the same as above but for single-end reads.




Cutadapt

cutadapt: Set to True to run preprocessing with cutadapt.


Note

Trimmomatic has priority in the preprocessing so if both Trimmomatic and Cutadapt are set to True, only Trimmomatic will be run.



adapter_sequence: Adapter sequence for trimming. By default the workflow uses the Illumina TruSeq Universal Adapter.

rev_adapter_sequence: 3’ adapter to be removed from second read in a pair.

cutadapt_error_rate: Maximum allowed error rate as value between 0 and 1. Defaults to 0.1. Increasing this value removes more adapters.




Phix filtering

phix_filter: Set to True to filter out sequences mapping to the PhiX genome.




Fastuniq

fastuniq: Set to True to run de-duplication of paired reads using Fastuniq.


Note

Fastuniq only runs with paired-end reads so if your data contains single-end samples the sequences will just be propagated downstream without Fastuniq processing.






SortMeRNA

SortMeRNA [https://github.com/biocore/sortmerna] finds rRNA reads by
aligning to several rRNA databases. It can output aligning, rRNA, reads
and non-aligning, non_rRNA, reads to different output files allowing
you to filter your sequences.

sortmerna: Set to True to filter your raw reads with SortMeRNA.

sortmerna_keep: Sortmerna produces files with reads aligning to rRNA (‘rRNA’ extension)
and not aligning to rRNA (‘non_rRNA’) extension. With the sortmerna_keep setting
you specify which set of sequences you want to use for downstream analyses
(‘non_rRNA’ or ‘rRNA’)

sortmerna_remove_filtered: Set to True to remove the filtered reads (i.e. the reads NOT specified
in ‘keep:’)

sortmerna_dbs: Databases to use for rRNA filtering. Can include:


	rfam-5s-database-id98.fasta


	rfam-5.8s-database-id98.fasta


	silva-arc-16s-id95.fasta


	silva-arc-23s-id98.fasta


	silva-bac-16s-id90.fasta


	silva-bac-23s-id98.fasta


	silva-euk-18s-id95.fasta


	silva-euk-28s-id98.fasta




sortmerna_paired_strategy: How to handle read-pairs where mates are classified differently. If set to
paired_in both reads in a pair are put into the ‘rRNA’ bin if one of them aligns (i.e. more strict)
while paired_out puts both reads in the ‘other’ bin.

sortmerna_params: Extra parameters to use for the sortmerna step.




Markduplicates

This is technically post-processing but to remove duplicates prior to producing read counts of ORFs called on assembled
contigs you can set markduplicates:True. The picard_jar and picard_path can most often be left blank as the workflow will automatically identify
these paths in your conda environment. However, if you run into trouble with this step try searching for
picard.jar and its directory.







          

      

      

    

  

    
      
          
            
  
Classify reads

Reads can be classified taxonomically using k-mer based methods. Two
popular programs for this purpose are
Centrifuge [https://github.com/infphilo/centrifuge] and
Kraken2 [https://github.com/DerrickWood/kraken2]. The workflow can run both tools on all samples specified in your
sample annotation file [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/configuration/sample_list.html] and produce interactive krona-plots and kraken-style reports.

Database construction for kraken and centrifuge is not part of this workflow. Please refer to the respective
documentation for these tools (Kraken manual [http://ccb.jhu.edu/software/kraken],
Centrifuge manual [https://ccb.jhu.edu/software/centrifuge/manual.shtml]). However, both tools have pre-built indices
which saves you the trouble of downloading and building these on your own.

Individual krona plots are created in results/centrifuge/ and results/kraken/. Combined krona plots are created in
results/report/centrifuge and results/report/kraken. The kraken-style *.kreport files created within these
directories can be loaded into the tool pavian [https://github.com/fbreitwieser/pavian]. Either install the pavian R package or run it using Docker
(see instructions at the GitHub repo).


Centrifuge

Relevant settings for Centrifuge are:

centrifuge_prebuilt: By default, the workflow uses the prebuilt p+h+v index containing
prokaryotic, viral and human sequences which it will download from the
centrifuge FTP [ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data]. Other valid choices are:
p_compressed+h+v, p_compressed_2018_4_15, nt_2018_2_12 and nt_2018_3_3. The index will
be downloaded to resources/classify_db/centrifuge/.

centrifuge_custom: If you have created your own custom centrifuge index, specify the its path here, excluding
the .*.cf suffix.

centrifuge_summarize_rank: The centrifuge index can be summarized to see number of sequences and total size in
bp for each taxa at a certain rank specified by this config parameter (superkingdom by default). To generate the
summary file run:

snakemake --config centrifuge=True centrifuge_summary





The summary output will be placed in the same directory as the centrifuge index (resources/classify_db/centrifuge if
using the prebuilt index) in a file with the suffix ‘.summary.tab’.

centrifuge_max_assignments: This determines how many assignments are made per read. By default this parameter
is set to 1 in this workflow which means centrifuge runs in ‘LCA’ mode similar to kraken where only the lowest common
ancestor of all hits is assigned for a read. The default setting for centrifuge is 5.

centrifuge_min_score: This is used to filter out classifications when creating the kraken-style report. Note
that this also influences the numbers in the Krona plots.

You can try out the Centrifuge read classifier by using one of the supplied
examples. To see the rules that would be run enter:

snakemake --configfile examples/centrifuge/config.yaml -np





Now perform the actual run with 4 cores:

snakemake --configfile examples/centrifuge/config.yaml -p -j 4








Kraken2

Relevant settings for Kraken2 are:

kraken_prebuilt: By default, the workflow uses the prebuilt MiniKraken2_v2_8GB database built from the
Refseq bacteria, archaea, and viral libraries and the GRCh38 human genome. Alternatively you can use
MiniKraken2_v1_8GB which will download the database excluding the human genome. These minikraken databases
are downsampled versions of the standard database which could influence sensitivity. However,
evaluations [http://ccb.jhu.edu/software/kraken2/images/Kraken1v2_BuildDBAccuracy_Table.png] suggest that with
kraken2 the drop in sensitivity is minimal.

kraken_custom: If you have created your own custom centrifuge index, specify the path to the directory
containing the hash.k2d, opts.k2d and taxo.k2d files.

kraken_reduce_memory: Set to True to run kraken2 with --memory-mapping which reduces RAM usage.

Try out the Kraken2 read classifier using the supplied example:

snakemake --configfile examples/kraken/config.yaml -np










Filtering results

Sometimes you may see taxa pop up in your classification output that you
are not sure are really there. The k-mer based methods such as Centrifuge
and Kraken do not provide information on e.g. genome coverage that
tools like bowtie2 or blast can give. However, for very large datasets
and very large genome databases using read-aligners is not tractable due
to extremely long running times.

This workflow can utilize the speed and low disk-space requirements of
Centrifuge to obtain a set of ‘trusted’ genomes that are used for more detailed
mapping analyses.

To try this out on the example above enter:

snakemake --configfile examples/centrifuge/config.yaml --config centrifuge_map_filtered=True -np -j 4





Because we set centrifuge_map_filtered=True the output from Centrifuge is now filtered in a two-step setup.

To perform the actual runs (again with 4 cores) do:

snakemake --configfile examples/centrifuge/config.yaml --config centrifuge_map_filtered=True -p -j 4





Below are explanations of the different filtering steps and the output produced.


Centrifuge filtering

First taxids with at least centrifuge_min_read_count assigned reads are identified
and the corresponding genome sequences are extracted from the Centrifuge
database. By default centrifuge_min_read_count is set to 5000.




Sourmash filtering

Next, genomes passing the first filter are passed to [sourmash](https://github.com/dib-lab/sourmash)
which builds ‘MinHash’ signatures of the genomes. These signatures are essentially highly
compressed representations of the DNA sequences. Signatures are also computed
for each (preprocessed) sample and these are then queried against the filtered
genome signatures. This gives an estimate of how much a genome is covered by a sample
by comparing the MinHash signatures. Settings which influence how this
filtering step is performed are:

sourmash_fraction: the number of hashes to compute as a fraciton of the
input k-mers. By default this is set to 100 meaning that 1/100 of the input
k-mer are used to compute the MinHash signature. Increasing the setting
will reduce the disk-space requirements but may also reduce performance.

sourmash_min_cov: This is the minimum coverage estimated from the sourmas filtering
step that a genome must have in order to pass to the next steps. By default
this is set to 0.1 meaning that a genome must be covered by at least 10%


in at least one of the samples.







Bowtie2 alignments

Finally, genomes that pass both filters are indexed using bowtie2 and
the (preprocessed) reads are mapped to this set of genomes. The resulting
bam-files are used to calculate coverage of genomes across samples.




Output

Under the results/examples/centrifuge_classify/report/ directory you will
find a bowtie2 sub-folder with indexed alignment files in bam format
as well as plots of:

[image: Samplewise coverage]
genome coverage in each sample and:

[image: Mean genome coverage]
average coverage per genome.

In addition, the bam files can be loaded directory into Pavian.
See some instructions here [https://github.com/fbreitwieser/pavian/blob/master/vignettes/pavian-walkthrough.Rmd#5-alignment-viewer---zoom-into-one-pathogen-in-one-sample]).

Note that you will have to increase the `maxUploadSize`of the pavian app in order
to load most bam files. If you installed pavian via R you can run the app as:

pavian::runApp(port=5000, maxUploadSize=500*1024^2)











          

      

      

    

  

    
      
          
            
  
Assembly

Assembly can be run as a single part of the workflow using the command:

snakemake --configfile <yourconfigfile> assembly





Megahit [https://github.com/voutcn/megahit] and Metaspades [https://github.com/ablab/spades] are currently the
only assemblers supported by this workflow. Megahit is used by default so in order to use Metaspades
you have to explicitly configure the workflow to do so (see below). Settings for these assembler are:

assembly: Set to True to assemble samples based on the assemblyGroup column in your
sample list [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/configuration/index.html#the-sample-list-file].

assembly_threads: Number of threads to use for the assembly software.

megahit_keep_intermediate: If set to True, intermediate contigs produced using different k-mer lengths,
as part of the megahit assembly procedure, are stored. Note that this can
take up a large chunk of disk space. By default this is set to False.

megahit_additional_settings: The megahit assembler is run with default settings. Use this parameter to
add additional settings to the megahit assembler, such as ‘–preset meta-large’
or something else that you want to change.

metaspades: Set to True to use the metaspades assembler instead of megahit

metaspades_keep_intermediate: As for megahit, setting this to True will store intermediate contigs created
during assembly.

metaspades_keep_corrected: Set to True to keep corrected reads created during metaspades assembly.

metaspades_additional_settings: This is where you put any additional settings for metaspades.


Reports

The workflow produces a set of report files for the assemblies created.
These files are saved in the directory specified by report_path: in
your configuration file.

assembly_stats.pdf

A multi-panel plot showing number of contigs, total assembly size, as well
as various length statistics of each assembly created.

The figure below shows the plot for the example dataset.

[image: Assembly report plot]






          

      

      

    

  

    
      
          
            
  
Annotation of coding sequences

This section deals with how to annotate protein sequences predicted on
assembled contigs.


Protein family annotation

Annotation of predicted protein coding sequences is performed using the tools
eggnog-mapper [https://github.com/jhcepas/eggnog-mapper]
pfam_scan [https://www.ebi.ac.uk/Tools/pfa/pfamscan/] (using the latest version of the PFAM database) and
rgi [https://github.com/arpcard/rgi] (Resistance Gene Identifier).

eggnog: Set to True in order to annotate coding sequences with eggnog-mapper.
This also adds annotations for KEGG orthologs, modules and pathways.

pfam: Set to True in order to add PFAM protein families to coding sequences.

rgi: Set to True in order to add AMR (Antimicrobial Resistance) gene families to coding sequences.

rgi_params: Determines how to run the rgi software. By default it’s run in ‘perfect’ mode, using the diamond alignment tool.
See the rgi GitHub pages <https://github.com/arpcard/rgi#rgi-main-usage-for-genomes-genome-assemblies-metagenomic-contigs-or-proteomes>_
for more information.


Note

The eggnog-mapper, pfam_scan and rgi programs all utilize separate conda environments. In order to use these tools you must run
the workflow with the --use-conda flag.






Taxonomic annotation

Taxonomic annotation of protein sequences is performed by:
1. similarity searches against a reference database
2. parsing best hits for each protein query and linking hits to taxonomic IDs
3. assigning a taxonomic label to the lowest common taxa for the ‘best hits’

The first step above is performed in this workflow using
Diamond [https://github.com/bbuchfink/diamond/] against a protein sequence
reference database. The workflow supports using the uniref50, uniref90, uniref100 or nr protein databases but you can
also use a preformatted custom database as long as it has been formatted with

taxonomic_annotation: Set to True to add taxonomic annotations to contigs (and ORFs).

taxdb: Can be one of ‘nr’, ‘uniref50’, ‘uniref90’, ‘uniref100’ or you can add a custom diamond database if you
format it with taxonomic ids (using the –taxonmap and –taxonnodes flags to diamond makedb)

diamond_threads: How many threads to use for the diamond blast job.

taxonomy_min_len: Minimum length of contigs to be included in the taxonomic annotation.

tango_params: Additional parameters to use for the tango [https://github.com/johnne/tango] taxonomic assigner

taxonomy_ranks: Taxonomic ranks to use in output.


Note

If you want to use a custom preformatted protein database. Make sure to put it as ‘diamond.dmnd’ in the
<resource_path> directory as specified in your configfile. Then run the workflow once with the -t flag
to update the timestamps on the existing files.








Generating required database files

Several steps of this workflow requires large database files that may take
a long time to download and format. If you want to can run the database
creation separately with the workflow (e.g. while you’re waiting for real
data to arrive).

To create the databases needed for the protein annotation steps (eggnog, pfam, rgi and taxonomic) you can run:

snakemake --configfile config.yaml --config eggnog=True pfam=True rgi=True taxonomic_annotation=True -np db

<lots of text>

Job counts:
    count   jobs
    1       db
    1       db_done
    1       download_eggnog
    1       download_pfam
    1       download_pfam_info
    1       download_uniref
    1       get_eggnog_version
    1       get_kegg_ortholog_info
    1       prepare_diamond_db_uniref
    1       prepare_taxfiles_uniref
    1       press_pfam
    11






Note

The ‘db’ target only includes database files used in preprocessing (SortMeRNA) and protein annotation.




See also

See the documentation for ways to create databases for read-classification [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/classification/index.html].







          

      

      

    

  

    
      
          
            
  
Binning metagenomic contigs

Assembled contigs can be grouped into so called ‘genome bins’ using information
about their nucleotide composition and their abundance profiles in several
samples. The rationale is that contigs from the same genome will have similar
nucleotide composition and will show up in similar abundances across
samples.

There are several programs that perform unsupervised clustering of contigs
based on composition and coverage. Currently, this workflow uses
MaxBin2 [https://downloads.jbei.org/data/microbial_communities/MaxBin/MaxBin.html] and/or
CONCOCT [https://github.com/BinPro/CONCOCT/]. The quality and phylogeny of bins can be estimated using
CheckM [https://github.com/Ecogenomics/CheckM].


Important

MaxBin2 uses conserved marker genes for prokaryotes to identify seed contigs. This means that it will not be able
to bin eukaryotic contigs. In order to properly bin eukaryotic contigs please use CONCOCT.




Important

The minimum required version of CONCOCT is 1.0.0 which only works on Linux so far.
However, if you manage to compile CONCOCT on OSX you can use it with the workflow by
installing it into the nbis-meta environment path and then omit the --use-conda flag
to snakemake.



To perform the binning step of the workflow run the following:

snakemake --use-conda --configfile <your-config-file> -p binning






See also

Check out the binning tutorial further down in this document.




Settings

maxbin: Set to True to use MaxBin2.

concoct: Set to True to use CONCOCT.

min_contig_length: Minimum contig length to include in binning. Shorter contigs will be ignored. By setting
multiple values here you can make the workflow run the binning steps multiple times with different minimum lengths.
Output is stored under results/maxbin/<min_contig_length>/ and results/concoct/<min_contig_length>/.

maxbin_threads: Number of threads to use for the MaxBin2 step.

concoct_threads: Number of threads to use for the CONCOCT step.


Note

If there are not enough contigs meeting the minimum contig length cutoff the workflow
will exit with an error. Either decrease the length cutoff or see if you can improve
the assembly somehow.






Binning tutorial

When the binning step is included in the workflow all assembly groups
specified in the sample annotation file [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/configuration/sample_list.html]
will be binned and for each assembly the abundances of contigs will be
calculated by cross-mapping all samples in the sample annotation file.

This means that if you have many assemblies and/or samples there will be
a lot of jobs to run which can be a bit overwhelming. If you want you may
first run the assembly [http://nbis-metagenomic-workflow.readthedocs.io/en/latest/assembly/index.html]
step and then bin individual assemblies.

Let’s try this out using some supplied example data. The configuration
file examples/binning/config.yaml is set up to use four mock communities created with this
metagenomic-mocks [https://bitbucket.org/johnne/metagenomic-mocks] repository.
The samples each contain 100,000 read-pairs sampled from the same 10
genomes but in varying proportions, roughly simulating the proportions
of the genomes in different body sites.

Have a look at the jobs that will be run in this example by doing a dry-run:

snakemake --use-conda --configfile examples/binning/config.yaml -np





Results will be placed under results/examples/.

Summary statistics for generated bins are written to a file summary_stats.tsv inside every bin directory (e.g.
results/examples/concoct/stool/1000/summary_stats.tsv in the example above).


Splitting up the example

If you want, you can first generate the assemblies which will be used for
binning. Simply run:

snakemake -j 4 --configfile examples/binning/config.yaml -p assembly





Then run the binning steps:

snakemake --use-conda -j 4 --configfile examples/binning/config.yaml -p binning
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Community profiling

The community composition of your samples can be analysed using MetaPhlAn2 [https://bitbucket.org/biobakery/metaphlan2]
(Truong et al. 2015 [https://www.nature.com/articles/nmeth.3589]) which uses clade-specific markers genes to estimate
abundances.


MetaPhlAn2

To run MetaPhlAn2 set metaphlan2:True in your configfile.


Note

You will have to run snakemake with the --use-conda flag in order for metaphlan2 to work.




Output

MetaPhlAn2 will produce krona plots for individual samples under results/metaphlan2/*.html and a merged
krona plot with all samples under results/report/metaphlan2/metaphlan2.krona.html. In addition, a heatmap of abundances
with hierarchical clustering of samples and species is created under results/report/metaphlan2/metaphlan2.heatmap.png.









          

      

      

    

  _static/nbis.png
NATIONAL BIOINFORMATICS
INFRASTRUCTURE SWEDEN





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          NBIS Metagenomics Workflow
        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





